
N8 8- 1 7 2 6 6
SYSTEM INTEGRATION

of a
TELEROBOTIC DEMONSTRATION SYSTEM (TDS)

TESTBED

John K. Myers
SRI International, Robotics Laboratory

Menlo Park, California

Abstract

This paper describes the concept for and status
of a Telerobotic Demonstration System testbed that
integrates teleoperation and robotics. The system
is being developed by the Jet Propulsion Labora-
tories with technical assistance from SRI Interna-
tional. The components of the telerobotic system
are described and the projects performed by SRI
International are discussed. The system can be di-
vided into two sections: the autonomous subsys-
tems, and the additional interface and support sub-
systems including teleoperations. The autonomous
subsystems are scheduled to be demonstrated sepa-
rately at the end of 1987, and the entire, integrated
telerobotic system is scheduled to be demonstrated
at the end of 1988.

Acknowledgments: Other members of the consulting
team at SRI International include Ron Cain, Cregg Cowan,
Jim Herson, Tony Sword, and Doug Ruth. The project was
supervised by Jan Kremers and David Nitzan. I would like
to thank the contract monitor, Wayne Zimmerman of JPL,
for excellent management and for significant contribution
to most of the ideas expressed in this paper.

1 Overview

The Jet Propulsion Laboratories is constructing a teler-
obotic demonstration testbed system, known as the TDS,
where the current state-of-the-art in robotic and teleop-
eration concepts can be integrated, tested and explored.
Although building a space-worthy robot is not an immedi-
ate goal, the system concepts and experience obtained will
be useful and may eventually be applied to a deployable
system.

In order to demonstrate a realistic application, the task
of servicing a defective satellite has been selected. The
satellite has a defective electronics module contained in a

'Thin paper and the consulting work described herein were
supported by Jet Propulsion Laboratories under Contract 957908.

backplane-type slot. As currently envisioned, the repair
operation will proceed as follows: The operator will use
teleoperation to fold back a flexible foil space blanket and
attach its corners to holding tabs. The operator will then
place the system in autonomous mode, and instruct the
system to replace the electronics module. To accomplish
this taski the system will plan and execute motions to un-
screw and remove the door, unplug electrical connectors
from the electronics module, remove and replace the mod-
ule, replug the connectors, and replace and rescrew the
door;

Figure 1 shows the layout of the TDS setup. Two Uni-
nation PUMA robots perform the actual work on a satel-
lite mockup. A third robot holds a stereo camera pair for
the vision-system and for operator feedback. Three addi-
tional cameras are positioned on the walls and ceiling of
the room. A rack for quick-change tools and spare parts is
positioned in front of the robots. The robots are mounted
on lathe beds to provide one additional degree of freedom.
Figure 2 shows an early version of the actual testbed. Fig-
ure 3 shows a solid-model simulation of the testbed, which
will be discussed further in a following section.

SRI International is consulting for JPL on the integra-
tion of the different parts of the system. The telerobotic
system itself is constructed of four subsystems that com-
prise the main, autonomous part of the robotic system, and
three additional subsystems that provide for operator in-
teraction and support the system. The original layout and
most of the actual coding of the system was determined
and continues to be developed by JPL. SRI is helping JPL
to specify the functions of each of these subsystems, and to
develop the communication between them Besides this gen-
eral consulting, SRI currently has four deliverable tasks.

This paper will first discuss the structure of the TDS.
Each of the four autonomous subsystems will be defined
and examined, followed by the three additional subsys-
tems. After this, the four deliverable projects that SRI is
performing will be examined and discussed.

433

Tool Bin and
Replacement Puts

Time
Controller

2 The Autonomous Subsystems

The autonomous portion of the TDS consists of the fol-
lowing four subsystems: Artificial Intelligence Planning
(AIP), Run-Time Control (RTC), Manipulation and Con-
trols Mechanization (MCM), and Sensing and Perception
(S&P). See Figure 4. Each of these subsystems runs on
its own separate computer. The AIP uses a Symbolics
Lisp Machine, while the other subsystems use MicroVax I1
computers.

Figure 1: The Layout of the Testbed Setup

1 Artificial
Intelligence

1 Planner

Figure 2: The JPL Testbed

~~

Figure 3: A Simulation of the Testbed

Figure 4: The Autonom us Subsystems

2.1 The Artificial Intelligence Planning
Subsystem

The AIP is responsible for planning the actions to perform
when the system is under autonomous control. The input
to the AIP subsystem is a description of the problem, and
a statement of the goal to be accomplished. For instance,
in the demonstration task, the input is a description of the
state of the satellite, (including the fact that the electronics
module is defective), and the goal that the satellite be
healthy. The AIP plans the actions to take, and directs
the Run Time Control to execute those actions.

ORIGINAL PAGE IS
434 ol3 POOR QUALITY

Internally, data used by the AIP consists of a rule base
describing different conditions and the order in which dif-
ferent procedures must be accomplished. For example: in
order to have a healthy satellite, the module must be re-
placed; in order to replace the module, first the old module
must be removed and then the new module must be in-
serted; in order to remove the old module, the door must
be open; in order to open the door, the retaining bolts
must be unscrewed; in order to unscrew the bolts, the arm
must pick up a nutdriver and then perform the unscrewing
action. These rulea are represented and stored in a com-
mercial expert system, ART, which is used to reason about
what robot system actions must be taken.

The output from the AIP is a series of symbolic actions,
such as “Move to above tool bin,” “Pick up nutdriver,”
UMove to above bolt #1,” and “Unscrew bolt.” These are
passed to the Run-Time Control.

2.3 The Manipulation and Controls
Mechanization Subsystem

The MCM subsystem directs the robots. It takes com-
mands from the RTC, and executes the robot motions on
the hardware. The MCM uses force feedback, if required,
to modify the motions of the robots. Currently the MCM
interfaces with the VAL controllers of the PUMA robots;
in the future, the MCM may control the robots directly.

The MCM is responsible for performing atomic (basic,
low-level) motions. However, it does have some “reflex
macro” motions that are considered to be atomic, but are
actually composed of a series of motions. For instance,
the robot’s nutdriver might be positioned right above the
bolt, and the MCM might be instructed to “execute un-
screwing motion.” The robot lowers the nutdriver onto the
bolt head, and “feels around” until the nutdriver is seated.
Then, the robot rotates the nutdriver, maintaining appro-
priate pressure in the direction of the bolt shaft, untilthe
bolt is unscrewed. This “macro” is actually a series of mo-
tions. Since this action sequence will always be the same,
and is only varied on the fine motion scale based on force
sensor readings, the action is considered to be an atomic 2.2 The Run-Time Control Subsystem

The RTC is responsible for instantiating symbolic actions
into robotic motions for the system to execute. It takes
commands from the AIP, and coordinates the functions of
both the MCM and the S&P subsystems. The RTC uses a
collision-detection spatial simulator to verify motions. In
the future, it will use a collision avoidance module to plan
paths around obstructions.

For example, given the symbolic command “Move to
above bolt #1”, the RTC might perform the following.
First, the RTC accesses the location of bolt #1 in a data-
base to instantiate it into a “[4x4]” homogeneous coordi-
nate transformation matrix. If the precise location is not
known, or could have changed, the RTC directs the S&P
subsystem to verify (or determine) the current location
using vision. Next, the RTC uses a predefined “above”
distance for that particular bolt to compute the actual lo-
cation to move to. After this, a “move to above” program
is accessed, which may actually contain several individ-
ual arm motions, depending on where the robot is at the
present time. The RTC executes a predictive collision de-
tection simulation of the proposed motion, to ensure that
the robot will not collide with anything when it moves. Fi-
nally, the actual instantiated robot system commands are
scheduled and sent to the MCM subsystem, and the S&P
subsystem if required (e.g., in the previous example).

motion.

2.4 The Sensing and Perception
Subsystem

The S&P subsystem is responsible for verifying the loca-
tions of objects by using visual feedback. The S&P sub-
system has three-dimensional models of all of the viewable
parts in the testbed. It uses these models, and an edge
image of the scene extracted from the gray-scale image,
to perform verification of the position and orientation of
parts. The vision system can track moving objects (us-
ing a Kalman filter to predict the location of moving ob-
jects based on time), use information from multiple camera
sources taken at different times, and verify the locations
of partially occluded objects. In addition, randomly posi-
tioned objects can be searched for and visually acquired;
however, this takes significantly longer. See [l] for further
details.

The S&P reports its results to the RTC, and also sends
results directly to the MCM when requested. An example
of a command might be to “verify the location of bolt #1
at approximate location X.” The S&P decides the most ap-
propriate camera for viewing that location, takes a picture
and computes the edge image, verifies the bolt’s location
using the visual model of the bolt, and returns the refined
location to the RTC.

43 s

3 The Additional Subsystems

Besides the autonomous subsystems, there are three addi-
tional subsystems that support the TDS and provide im-
portant functions. These are: Teleoperations (TELEOP),
the Operator’s Control Station (OCS), and the System EX-
ecutive (EXEC). See Figure 5.

/
robots

Figure 5: The Additional Subsystems

3.1 The Teleoperations Subsystem

The TELEOP permits the robots to be operated by a per-
son. This allows greater flexibility in actions that can be
accomplished, by permitting the operator to perform ac-
tions that cannot be done autonomously. The TELEOP
controls two Salisbury “hand controllers,” which each con-
sist of a handle in a gimbaled cradle attached to the end
of a pivoted telescoping shaft. Each of these controllers
permits input in six degrees of freedom. The hand con-
trollers’ mechanical system are “counterweighted” and use
bearings to allow fast and smooth motion. Besides pas-
sively providing location as an input to the system, the
hand controllers also actively reflect force to the operator’s
handles as a feedback output. This is used for example to
communicate contact at the end of the arm, as detected
by the arm’s force sensor, and to slow the hand controller
down if the operator is slewing too rapidly and the robot
arm is lagging too far in its tracking. In the future it will
also be used to reflect virtual forces from imaginary “force
fields” around modeled objects, and so assist the operator
in avoiding collisions [2].

The TELEOP also supports the switchover from au-
tonomous mode to teleoperational mode and back again.
In the present design, the two system modes are essen-

tially disjoint. The autonomous system runs by itself and
drives the robot arms. At any time, the operator can re-
quest or demand a switchover, and the autonomous system
either gracefully shuts down, or aborts all actions and re-
turns control to the teleoperator. The teleoperation system
then becomes active; the teleoperator can move the arms
and remedy any anomalous conditions (such as dropped,
wedged, bent or damaged parts), or can perform neces-
s a r y actions that are beyond the dexterity of present-day
autonomous robotics. When the teleoperator is finished,
he or she returns control to the autonomous part of the
system, and the TELEOP becomes inactive.

An open research issue is the best way of switching from
teleoperator to autonomous control. The autonomous sub-
systems depend on knowing the approximate location of
all objects in the system. In both the present-day TDS,
and in the eventual space application, this is a reason-
able assumption; once the satellite has been acquired and
fixed relative to the robots, the robots, tools, and satel-
lite parts become a closed system. After teleoperation,
however, the information in the autonomous subsystems’
databases may be invalid. Old parts may be unexpectedly
moved or missing (e.g., dropped on the floor); the operator
could conceivably introduce new parts or sufficiently un-
familiar configurations or modifications of old parts such
that they would be unrecognizable by the system.

Assuming that the difficulties are restricted to reloca-
tions of old parts, at least four possibilities for solving this
problem are being considered. The autonomous system
could direct the teleoperator and give instructiqns as to
which parts he or she is allowed to work on. Or, the tele-
operator could pick from a menu of standard telwperation
procedures or states to inform the autonomous system of
the status of the system. Alternatively, the teleoperator
could explicitly tell the autonomous system about each
object that was moved. An advanced autonomous system
could reinitialize its view of the world by verifying the lo-
cations of all expected parts and recognizing the intruding
locations of all relocated parts.

Perhaps the best solution would be to convert the sys-
tem from one that is disjoint between the autonomous and
teleoperation modes, to one where the two parts are co-
operative and the distinction is blurred. In a futuristic
system, the autonomous part of the system would remain
on all the time, and “watch over the operator’s shoulder”
as the teleoperator works. It would observe where the op-
erator is placing parts, so that even during teleoperation,
the system would have a full, accurate model of the loca-
tions of objects. The autonomous system would also at-
tempt to understand what actions the teleoperator would
be performing, and guess what he or she would be trying
to accomplish. The autonomous system could then direct
additional arms to assist the teleoperator, or take over if a
routine task (e.g., unscrewing the bolt) is being performed.

436

3.2 The Operator’s Control Station
Subsystem

The OSC subsystem consists of a number of display screens
and a keyboard in an ergonomically designed layout. The
operator can monitor the status of the system and enter
commands for the system to execute. The commands are
sent to the AIP, the TELEOP, or the System Executive (to
be discussed). The different ordinary and emergency sta-
tus messages are displayed for the operator; the operator
can also obtain views of the work from any of the cam-
eras, and displays of solid models of the testbed describ-
ing what the system believes the current location of robots
and objects to be. The OCS will be equipped with discrete-
word voice input, and voice output for status messages and
alarms. In addition, a dual-screen superimposed polarized
display will allow three-dimensional viewing to operators
wearing polarized glasses. The input for this will probably
be taken from the stereo camera pair mounted on the third
arm, although it could be computer-generated from solid
models of the scene.

3.3 The System Executive Subsystem

The EXEC subsystem is responsible for configuring the
system, testing each individual subsystem and the inte-
grated system as a whole, and managing the health of the
system. It can suspend and resume the entire system or
pieces of the system, and it is also responsible for main-
taining an initialization database for the entire system. It
manages all of the other subsystems.

The EXEC maintains a library of executable programs
for the system. This ensures that the system’s software
is consistent, and that the different versions of executable
files for the different subsystems are kept up-to-date. When
the system is initially turned on, the EXEC is responsi-
ble for configuring the system. Executable files are down-
loaded and the system is “brought up” piece by piece. The
EXEC also maintains an initialization database, which is
downloaded to the different parts of the system once the
system is running. These will be discussed in greater detail
in following sections.

Once the system is running, the EXEC is responsible
for testing each of the subsystems in turn, to ensure that
each one is fully configured and capable of running. Each
subsystem is also directed to test its hardware, if w.y, and
report the results back to the EXEC. After this, the system
as a whole is tested: the AIP is directed to plan a minute,
single movement and take a picture. This command is
watched as it filters down through the RTC to the MCM
and S&P, and as the results are returned via the RTC to
the AIP. If everything works properly, then the system as
a whole is up and running. Future commands will simi-
larly test the TELEOP and OCS subsystems’ operation in

the system as a whole. In addition, the EXEC will even-
tually be able to “watch over the shoulder’’ of the system
rn it executes tasks, detect when a computer has become
“wedged” or has “crashed,” and recover the system from
this state.

The EXEC is also responsible for gradual and emer-
gency shutdowns of the system, and the corresponding re-
sumption of execution. There will be several grades of
shutdown, depending upon whether the operator wants
control when convenient to the system, “soon,” or im-
mediately; whether the arms are expected to retreat to
a convenient safe position, finish the current process and
then stop, or freeze “dead in their tracks;” and whether the
computer processes are expected to be able to resume from
where they left off, start over, or be completely deleted.
System resumption will similarly have to take different
forms, depending upon the state of the robots and com-
puter processes.

4 The SRI Projects for the TDS

In addition to general consultation on the design and de-
velopment of these subsystems, SRI International is pro-
viding four deliverables for the TDS. These include: the
Network Interface Protocol (NIP), the Robotic Simulator
with Collision Detection (RCODE), the System Configura-
tion package, and the System-wide Initialization Database
and Editor. The position of these packages in the TDS is
shown in Figure 6.

Artificial
[Planner Intelligence J

\ RTC

Figure 6: SRI International Contributions

43 7

4.1 The Network Interface Protocol

The Network Interface Protocol (NIP) is a package of soft-
ware that allows communications between different sub-
modules, with the emphasis on robotic applications. It
has been delivered and installed on MicroVax machines,
and SRI is currently finishing development of a version
for the Symbolics. The NIP is currently implemented on
top of DECNZT for the Ethernet. However, one of its
goals is to separate the implementation of the communica-
tions channel from the actual communications themselves.
So, if a new technology of communications channel is c h e
sen, none of the subsystems have to be modified; only the
implementation-specific levels of the NIP itself have to be
changed.

The NIP is specifically designed to facilitate robotic
communications, which possess slightly different charac-
teristics from file transfer or mailbox applications. Thus,
the NIP must support these characteristics. One differ-
ence is timing. In robotics, transactions typically consist
of a command issued from a “master” machine to a “slave”
machine. The transaction remains open until the slave ma-
chiLe replies to the commyd. However, instead of replying
dirdctly, or in a few tenths of seconds, in typical robotic ap-
phcations the slave (for instance) might execute a motion
with a physical arm and not reply back until the motion
has finished, which may require seconds or even tens of
seconds-and the delay time may be unknown ahead of
time.

A robotic motion
may be prevented from finishing (especially in the case of
force servoing) but still be active, so that it is problematical
to state even objectively whether the motion has failed or
not. Similar real-world effects exist in vision applications,
where (for instance, if presented with a textured pattern,
perhaps caused by a bad reflection) an unknown, signifi-
cantly large number of “blobs” or “edges” can effectively
cause the vision system to stop returning answers, while
the vision system itself believes that it is properly per-
forming its functions. In addition, robotic applications are
notorious for finding unexpected ways to crash the com-
puter they are running on. Problems such as trapping on
division by zero or stack overflow, or handling a dropped
synchronous communications line to a hardware device,
must be detectable and recoverable. Thus, robotic com-
munications must be flexible: they must support transac-
tions that remain open over long periods of time, where
it is problematical whether the slave will actually return
with an answer or not.

However, other characteristics must be supported. The
master might not be able to afford waiting for the return,
SO the communications must have the option to be pol-
lable: the master can continue processing, and periodically
check back to see whether a message has arrived yet or not.

Another difference is completion.

Some communications are urgent and should not remain
in an input queue, so they should be able to trigger inter-
rupt servicing routines in the application program. With
some communications, normal processing cannot proceed
until an answer is returned, so the NIP must also support
waiting for a response, with an optional time-out clock.
Other requirements, such as supporting simultaneous con-
versations, are too numerous to mention here. The NIP
provides such a communication package that is tailored
for robotic applications.

4.2 The Robotic Simulator with Collision
Detection

The Robotic Simulator with Collision Detection (RCODE)
presents a spatial occupancy model of the robots and parts
in the scene, that is used to determine whether a collision
would occur with a certain movement or not [3]. Objects
are modeled using a CSG (constructive solid geometry)
system, employing the volume primitives sphere, cylinder,
box, and half-space, and the construction operator union
(intersection and subtraction are not supported, due to the
nature of the algorithms). Device-independent wire-frame
and Z-buffer shaded-surface graphics are provided by the
system; an example of a model of the TDS is shown in Fig-
ure 3. Joint-interpolated, straight-line, and user-specified
trajectories are supported. Movement simulation is per-
formed using the stepped-move approach; that is, a single,
stationary scene is tested, the moving robots’ positions are
incremented slightly, and the next scene is tested. The sys-
tem can test an average scene in about 0.2 seconds on a
VAX 750, through use of a hierarchy of enclosing volumes.

The RCODE package has been installed at JPL. It is
used by the RTC subsystem to verify arm motions to be
sent to the MCM. Other collision detection algorithms,
such as that proposed by Canny [4], are also being inves-
tigated. Currently, the arm can only move directly to a
specified goal location, and the collision detection package
verifies the proposed path. In the future, a spatial oc-
cupancy simulator may be used by a routine to generate
original collision-free paths, such as the one reported in 15).
Collision-free path planning is important because it is the
link between artificial intelligence and robotics that allows
the system to start to become truly autonomous.

438

4.3 The System Configuration Package

At startup time, the System Configuration package down-
loads executable and data files to all of the other comput-
ers, and establishes computer processes and communica-
tion links in the system, in order to bring the system up.
A schematic diagram of the configuration package is shown
in Figure 7. The configuration package is currently in the
desim stage, and will be delivered by the end of 1987.

,Artificial
Intelligence

‘B
Controller

Manipulation C rntrol Mechanization J-1 Fercep(lon J
Figure 7: System Configuration Package

Configuration actions that the System Configuration
package must perform include: downloading executable
files, downloading data files, killing all unauthorized pro-
cesses, starting a process by executing a file, initializing
(starting up) a running process by downloading initial-
ization parameters, downloading an initialization run-time
data-base to a running process, establishing communica-
tidn links between running processes, prompting the user
and waiting for verification (for such things as turning on
a hardware device), testing the status of a process, killing
a specified running process, testing a hardware device con-
trolled by a process, testing a communications link between
two processes, and allowing an initialized, running process
to “take off” and actually perform in the system.

Even given the actions needed to set the system up,
con6guring a robot system is not straightforward because
of dependencies that exist in the order in which the con-
figuration actions must be performed. For instance, in the
TDS, the subsystems are arranged in a control hierarchy

80 that some computers send command messages to other
computers. This requires those computers to be running,
initialized, and ready to receive those commands, before
those commanda are sent. Before any system messages can

be sent at all, the different coirirnunication links must be
established between processes. Many of the processes re-
quire initialization, or special data-bases to be downloaded
to them, after they are running but before they are ready
to become part of the system.

In the initial version, the order dependencies will be
handled by a programmer creating a command file of con-
figuration actions that is sent to a command interpreter
driving the configuration package. Subsequently, a sim-
ple backwards-chaining rule-based system will be created,
to take a list of dependencies, automatically generate the
pioper order, and drive the configuration package.

4.4 The System-Wide Initialization
Database and Editor

The Initialization Database will be used as part of the sys-
tem configuration sequence to initialize the system with
a given status, i.e. appropriate parts of the database are
downloaded to running processes. The Initialization Databas
is responsible for the entire system; the database must
store all the data used by all of the different subsystems
in the TDS. Therefore, the design of the database must be
general enough to store all types of data currently used by
the system, and to allow for expansion for future types of
data that may be introduced. For this reason, SRI is de-
signing a “flavor” based modeling scheme [SI that is able to
represent both objects and network relationships between
objects.

Each object in the database has a number of slots, each
having a name and an indication of the type of informa-
tion that may be stored there. The permissible types of
information are not limited; in particular, the specified
type can be a scalar, vector, character, or string, an ar-
ray, a member of a user-defined set, a pointer to a link,
or even a list of items. Objects are connected into net-
works with directed links; the link is also allowed to have
information slots. Slot values for objects and links may be

Object

-e---

Figure 8: Objects and Network Connections

439

specified, or they can be defaulted to the normal value for
that type. Since objects can be composed of slots of any
type, and since arbitrary network structures can be built
out of directed links, we anticipate that the design should
be general enough for future expansion.

An example object might be the data-base entry for
storing the information about a bolt. The bolt has such
information slots as name, object type, absolute location,
weight, visual model, graphics display model, and spatial
occupancy model. It also has links to various networks
such as those called relative location, obstructs, virtual
enclosing object, articulation (attachment type), and is-
an-assembly-of. A relative location link between the bolt
and the door for instance might have the slots link-type,
forward [4 x4] transformation, relative-from-object, back-
ward transformation, and relative-to-object.

In addition to the database, SRI is developing an editor
to be used in entering information into the database. Be-
sides the customary adding or deleting an object or mod-
ifying an object’s slots, users will be able to define and
modify object types. Both the editor and the database are
expected to be delivered by the end of 1987.

I

5 Conclusion

This paper has presented a discussion of the current state
of JPL’s Telerobotic Demonstration System testbed, and
the system integration work that SFU International is per-
forming to help realize this testbed. The system was di-
vided into autonomous mode subsystems, and additional
subsystems (including Teleoperations); the workings of each
subsystem by itself and how the subsystems integrate into
a complete system were discussed. Finally, specific deliver-
ables being contributed by SRI were explained. The goal of
the TDS is to pull together the current state-of-the-art in
teleoperations and different robotics areas. The different
autonomous mode subsystems are expected to be demon-
strated separately at the end of 1987; the entire system is
expected to be demonstrated at the end of 1988.

References

(11 D.B. Gennery. Tracking known three-dimensional ob-
jects. In Proc. AAAI-82, pages 13-17, 18-20 August
1982.

(21 C.P. Fong, R.S. Dotson, and A.K. Bejczy. Distributed
microcomputer control system for advanced teleoper-
ation. In Proc. 1986 Int. Conf. on Robotics and Au-
tomation, IEEE, April 1986.

[3] J.K. Myers. A robotic simulator with collision de-
tection: rcode. In Proc. of First Annual Workshop
on Robotics and Ezpert Systems-1985, pages 205-213,
Houston, Texas, June 1985.

[4] J. Canny. Collision detection for moving polyhedra.
IEEE f ians. on PAMI, PAMI-8(2):200-209, March
1986.

[5] J.K. Myers and G.J. Agin. A supervisory collision-
avoidance system for robot controllers. In Robotics
Research and Advanced Applications, pages 225-232,
American Society of Mechanical Engineers, Phoenix,
Arizona, 1982. Republished in Robotics World, Vol. 1,
No. 1, January 1983.

[SI Symbolics Common Lisp: Language Concepts. Sym-
bolics, August 1986.

440

